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Abstract

We introduce a simple, experimentally realizable, entanglement swapping protocol for continuous variables by exploring
nondegenerate optical parametric amplifier. Due to adopting the bright EPR beams and the simple direct measurement for Bell-
state, the entanglement swapping and the verification of entanglement swapping is within the reach of current technology and
significantly simplify the implementation. 2002 Elsevier Science B.V. All rights reserved.

Entanglement is central to all branches of the
emerging field of quantum information and quantum
computation. Entanglement swapping [1] may entan-
gle two quantum systems that have never directly in-
teracted with each other, which may be useful in estab-
lishing nonlocal correlations over very large distances
and other applications [2–4]. The entanglement swap-
ping of single-photon polarization states has been re-
alized experimentally by type II parametric down con-
version. All these investigations have only referred to
discrete-variable systems in finite-dimensional Hilbert
spaces. The schemes for continuous variable entan-
glement swapping were proposed that polarization-
entangled states of single photons are teleported using
squeezed-state entanglement [5], and both entangled
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states are produced with squeezed light [6]. Entangle-
ment swapping is really a special case of the quan-
tum teleportation. The scheme for continuous variable
entanglement swapping [6] is based on the prelimi-
nary experimental demonstration of continuous vari-
able teleportation of coherent state [7]. In the exper-
iment of Ref. [7], an entanglement source was built
from two single-mode phase squeezed vacuum states
combined at a beamsplitter. The Bell-state measure-
ment at Alice needs two sets of balanced homodyne
detectors and local oscillators (LO’s). Recently quan-
tum dense coding for continues variables has been
experimentally accomplished by means of exploit-
ing bright EPR beam with anticorrelation of ampli-
tude quadratures and correlation of phase quadratures,
which is generated from a nondegenerate optical para-
metric amplifier (NOPA) operating in the state of
deamplification [8]. In this Letter we will propose a
continuous variable entanglement swapping scheme
based on the experiment [8] in which the sources of
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Fig. 1. The schematic diagram for phase sensitive NOPA. DM,
dichroic mirror.

entanglement are the bright EPR from the deampli-
fication of NOPA and the Bell-state measurement is
obtained from the direct detection implemented with
two photodetectors and two RF splitters [9,10]. We
consider more general condition than the Ref. [6] in
which the squeezed vacuum states are regarded as
the minimum-uncertainty state. In the practical sys-
tems, the generated squeezed state is always not the
minimum-uncertainty state (〈δX2〉〈δY 2〉 = 1, δX and
δY are the quantum fluctuation of the quadrature com-
ponents), and there is large excess noise in the un-
squeezed quadrature phase component (〈δY 2

unsquee〉 >
1/〈δX2

squee〉) [8,11,12]. We will demonstrate the level
of entanglement produced from entanglement swap-
ping depend not only on the squeezing and also the
large excess noise in the unsqueezed quadrature com-
ponent. Applying the direct joint measurement of Bell-
state gives us simultaneously a protocol for the exper-
imental verification of entanglement swapping.

The schematic diagram for phase sensitive NOPA
is shown in Fig. 1. Two coherent input signalsa�
anda↔ with same frequencyω0 and orthogonal po-
larizations are injected into the NOPA. For simplifi-
cation and without losing generality, we assume that
the polarizations of the injected signal and idler field
are orientated along the vertical and horizontal direc-
tions, and their intensities and original phases before
NOPA are considered to be identical. The amplifier is
pumped with the second harmonic wave ofωp = 2ω0
and the amplitudeap � a�, a↔, in this case the pump
field can be considered as a classical field without de-
pletion during the amplification process. The output
signal and idler fields polarized along the vertical and
horizontal directions are denoted withb� andb↔. We
define the operators of the light fields at the center fre-
quencyω0 in the rotating frame,

(1)Ô(t)= ô(t)eiω0t ,

there O = [â�, â↔, b̂�, b̂↔] are the field envelope
operators ando = [Â�, Â↔, B̂�, B̂↔] are the field
operators corresponding to input and output signal and
idler fields. By the Fourier transformation we have

(2)Ô(Ω)= 1√
2π

∫
dt Ô(t)e−iΩt .

Here, the fields are described as functions of the
modulation frequencyΩ with commutation relation
[Ô(Ω), Ô+(Ω ′)] = 2πδ(Ω − Ω ′). A practical light
field can be decomposed to a carrierÔ(0) oscillating
at the centre frequencyω0 with an average amplitude
(Oss) which equals to the amplitude of its steady state
field, and surrounded by “noise side-bands”Ô(Ω)
oscillating at frequencyω0 ± Ω with zero average
amplitude [13]

(3)
〈
Ô(Ω = 0)

〉 =Oss, 〈
Ô(Ω �= 0)

〉 = 0.

The noise spectral component at frequencyΩ is
the hereodyne mixing of the carrier and the noise
side-bands. The amplitude and phase quadratures are
expressed by

X̂O(Ω)= Ô(Ω)+ Ô+(−Ω),
(4)ŶO(Ω)= 1

i

[
Ô(Ω)− Ô+(−Ω)],

with

(5)
[
X̂O(Ω), ŶO

(
Ω ′)] = iδ(Ω +Ω ′).

The input–output Heisenberg evolutions of the field
modes of the NOPA are given by [14]

b̂0� = µâ0� + νâ+
0↔, b̂0↔ = µâ0↔ + νâ+

0�,

b̂+� = µâ+� + νâ++↔, b̂+↔ = µâ+↔ + νâ+
+�,

(6)

b̂−� = µâ−� + νâ+−↔, b̂−↔ = µâ−↔ + νâ+
−�,

where â, â+ and b̂, b̂+ denote the annihilation and
creation operators of the input and the output modes.
The subindex 0 and± stand for the central mode at
frequencyω0 and the side-bands at frequencyω0 ±
Ω , respectively. The parametersµ = coshr andν =
eiθp sinhr are the function of the squeezing factor
r (r ∝ Lχ2|ap|, L is the nonlinear crystal length,
χ2 is the effective second-order susceptibility of the
nonlinear crystal in NOPA,ap is the amplitude of
pump field) and the phaseθp of pump field. In the
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following calculation the phaseθp is set to zero as
the reference of relative phases of all other light fields.
For bright optical field, the quadratures of the output
orthogonal polarization modes at a certain rotated
phaseθ are expressed by

X̂
b̂�(θ)=

b∗
0�b̂+�e−iθ + b0�b̂+

−�eiθ

|b0�|
= b̂+�e−i(θ+ϕ) + b̂+

−�e
i(θ+ϕ),

(7)X̂
b̂↔(θ)= b̂+↔e−i(θ+ϕ) + b̂+−↔ei(θ+ϕ),

where

ϕ = arg(b0�)= arg(b0↔)= arg
(
eiΦ + e−iΦ tanhr

)
is the phase of the modesb̂0�, b̂0↔ relative toθp and
Φ is the phase of the modesâ0�, â0↔ relative toθp.
Taking θ = 0 andθ = π/2 in Eq. (7), the amplitude
and phase quadrature of the output field are obtained

X̂
b̂� = X̂

b̂�(0)= b̂+�e−iϕ + b̂+
−�e

iϕ,

X̂
b̂↔ = X̂

b̂↔(0)= b̂+↔e−iϕ + b̂+−↔eiϕ,

Ŷ
b̂� = X̂

b̂�

(
π

2

)
= −i(b̂+�e−iϕ − b̂+

−�e
iϕ

)
,

(8)Ŷ
b̂↔ = X̂

b̂↔

(
π

2

)
= −i(b̂+↔e−iϕ − b̂+−↔eiϕ

)
.

When the injected subharmonic signal and harmonic
pump field are in phase(Φ = ϕ = 0), the maximum
parametric amplification is achieved [15]. The differ-
ence of the amplitude quadratures and the sum of the
phase quadratures between two orthogonal polariza-
tion modes are

X̂
b̂� − X̂

b̂↔ = e−r X̂â� − e−r X̂â↔,
(9)Ŷ

b̂� + Ŷ
b̂↔ = e−r Ŷâ� − e−r Ŷâ↔ .

Under the limitr → ∞, the output orthogonal polar-
ization modes are the perfect EPR beams with quadra-
ture amplitude correlation and quadrature phase anti-
correlation [7]. When the injected subharmonic sig-
nal and harmonic pump field are out of phase, i.e.,
Φ = ϕ = π/2, NOPA operates at parametric deam-
plification [16]. Therefore the sum of the amplitude
quadratures and the difference of the phase quadra-
tures of the orthogonal polarization modes are as fol-
lows

X̂
b̂� + X̂

b̂↔ = e−r Ŷâ� − e−r Ŷâ↔,

(10)Ŷ
b̂� − Ŷ

b̂↔ = −e−r X̂â� + e−r X̂â↔ .
Obviously, the EPR beams with the quadrature ampli-
tude anticorrelation and quadrature phase correlation
are obtained forr > 0 [9,10].

Now we consider the experimental NOPA system
operating at parametric deamplification. The parame-
tersµ andν in NOPA process not only are the function
of the squeezing factorr but also the function of the
amplifying factorr ′ of unsqueezed quadrature com-
ponent as

µ= er
′ + e−r

2
, ν = er

′ − e−r
2

,

here,r ′ � r, which satisfy the uncertainty relations for
the quadratures. The amplitude and phase quadratures
of two orthogonal polarization output modes are ob-
tained

X̂
b̂� = µŶâ� − νŶâ↔,
X̂
b̂↔ = µŶâ↔ − νŶâ� ,
Ŷ
b̂� = −µX̂â� − νX̂â↔ ,

(11)Ŷ
b̂↔ = −µX̂â↔ − νX̂â� .

In Ref. [10] bright entangled EPR beam can be pro-
duced by combining two bright amplitude squeezed
beams on a 50% beamsplitter. Conversely two bright
amplitude squeezed beams may be obtained by com-
bining bright entangled EPR beam on a 50% beam-
splitter. The amplitude and phase quadrature of two
bright amplitude squeezed beams produced from
bright EPR beam are obtained from Eq. (11)

X̂s1 = 1

2
e−r

[
Ŷâ� + Ŷâ↔ − X̂â� + X̂â↔

]
,

Ŷs1 = 1

2
er

′[
Ŷâ� − Ŷâ↔ − X̂â� − X̂â↔

]
,

X̂s2 = 1

2
e−r

[
Ŷâ� + Ŷâ↔ + X̂â� − X̂â↔

]
,

(12)Ŷs2 = 1

2
er

′[−Ŷâ� + Ŷâ↔ − X̂â� − X̂â↔
]
.

When the input modeŝa�, â↔ of NOPA are the coher-
ent state,〈δX̂2

â�〉 = 〈δX̂2
â↔〉 = 〈δŶ 2

â�〉 = 〈δŶ 2
â↔〉 = 1,

we can readily write up the variances of two bright
amplitude squeezed beams〈
δX̂2

s1

〉 = 〈
δX̂2

s2

〉 = e−2r ,〈
δŶ 2
s1

〉 = 〈
δŶ 2
s2

〉 = e2r ′.
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Fig. 2. Entanglement swapping using two NOPAs.

The Heisenberg inequality of two bright amplitude
squeezed beams are given

(13)
〈
δX̂2

s1(2)

〉〈
δŶ 2
s1(2)

〉 = e2(r ′−r) � 1.

When the r ′ is equal to r, two bright amplitude
squeezed beams are the minimum-uncertainty state. In
the practical NOPA systems, ther ′ is always larger
than ther. Thus the two bright amplitude squeezed
beams produced from bright EPR beam are not the
minimum-uncertainty state.

For our entanglement swapping scheme as shown
in Fig. 2, we need two NOPA: a bright entangled
state of two orthogonal polarization output modesb̂�,
b̂↔ and a bright entangled state of two orthogonal
polarization output modeŝc�, ĉ↔. Let us introduce
Alice, Bob, Claire and Victor to illustrate the whole
protocol with entanglement swapping and subsequent
experimental verification of entanglement swapping.
Alice and Claire shall share the entangled state of
modesb̂� and b̂↔ while Claire and Bob are sharing

the other entangled state of modesĉ� and ĉ↔. Thus,
initially Alice and Bob do not share an entangled
state. However, we will see that Alice and Bob can
establish the entanglement of modeb̂� and ĉ� with
information about Claire’s measurement results. Let
us assume Bob obtains the classical results from
Claire. Claire perform a joint measurement for mode
b̂↔ and ĉ↔ by the direct measurement of Bell-state.
b̂↔ is phase-shiftedπ/2 then is mixed withĉ↔ on a
50% beamsplitter (BS1). The bright output beams,ê

andf̂ , are directly detected byD1 andD2. Thee and
f are given by

ê=
√

2

2

(
b̂↔ + iĉ↔

)
,

(14)f̂ =
√

2

2

(
b̂↔ − iĉ↔

)
.

Each of the detected photocurrents is divided into
two parts by the RF power splitters. The sum and
difference of the divided photocurrents are expressed
by

i+ = 1√
2

(
X̂
b̂↔ + X̂ĉ↔

)
,

(15)i− = 1√
2

(
Ŷ
b̂↔ − Ŷĉ↔

)
.

Then the photocurrents are sent to amplitude and
phase modulators in the receiver (Bob), respectively.
The amplitude and phase modulators transform the
photocurrents into modêc�. The output beam from
modulators is found to be

(16)ĉ′� = ĉ� + √
2gswapi+ + i√2gswapi−,

where gswap describe Bob’s (suitably normalized)
amplitude and phase gain for the transformation from
photocurrent to output beam. Now Alice and Bob send
mode b̂� and ĉ′�, respectively, to Victor, then Victor
perform another joint measurement by the direct
measurement of Bell-state to verify the entanglement
swapping. The sum and difference of the divided
photocurrents at Victor are expressed by

iv+ = 1√
2

(
X̂
b̂� + X̂ĉ′�

)

= 1√
2

[(
X̂
b̂� + gswapX̂b̂↔

) + (
X̂ĉ� + gswapX̂ĉ↔

)]
,
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iv− = 1√
2

(
Ŷ
b̂� − Ŷĉ′�

)

(17)

= 1√
2

[(
Ŷ
b̂� − gswapŶb̂↔

) + (
Ŷĉ� − gswapŶĉ↔

)]
.

From Eqs. (11) and (17) we can readily write out the
variances of the sum and difference of the divided
photocurrents

Viv+ = Viv− =
(
er

′ + e−r
2

− gswap
er

′ − e−r
2

)2

(18)+
(
er

′ − e−r
2

− gswap
er

′ + e−r
2

)2

,

where the input modes of NOPA all are the coherent
state and two NOPAs have the same squeezing factorr

and the amplifying factorr ′ of unsqueezed quadrature
component. The modêb� andĉ′� possess the quantum
entanglement whenViv+ < 1 andViv− < 1. The smaller
is the variances of the sum and difference of the
divided photocurrents, the large is the entanglement
of modeb̂� and ĉ′�. There is an optimum gain for the
maximum entanglement, which one can easily find by
minimizingViv+ andViv− to be

g
opt
swap= e2r ′ − e−2r

e2r ′ + e−2r
,

(19)V
opt
iv+

= V opt
iv−

= 2e2(r ′−r)

e2r ′ + e−2r
.

From Eq. (19) it is obvious that the quality of the en-
tanglement from entanglement swapping depends on
not only squeezing factorr but also the amplifying fac-
tor r ′ of unsqueezed quadrature component as shown
in Fig. 3. The variances of joint measurement of NOPA
1 or 2 only depend on the squeezing factorr, and the
quality of entanglement of NOPA 1 or 2 is larger than
that of the entanglement from entanglement swapping
(curve (e) of Fig. 3). Under the samer, the larger
is the amplifying factorr ′ of unsqueezed quadrature
component, the smaller is the quality of the entangle-
ment from entanglement swapping. Whenr ′ has infi-
nite large noise, the creation of entanglement between
modeb̂� andĉ� is possible only with more than 3 dB
squeezing (e−2r < 0.5) and in this casegopt

swap is unity
gain.

We proposed easily realized scheme of entangle-
ment swapping for continuous variables using two

Fig. 3. Variance of Victor’s joint measurement, (a)r ′ = 10r ,
(b) r ′ = 5r , (c) r ′ = 2r , (d) r ′ = r , (e) variance of joint measurement
of NOPA 1 or 2.

NOPA operating in the state of deamplification. We
pointed out the quality of the entanglement from en-
tanglement swapping depend on not only squeezing
factorr but also the amplifying factorr ′ of unsqueezed
quadrature component. Due to adopting the bright
EPR beams and the simple direct measurement for
Bell-state, the entanglement swapping and the verifi-
cation of entanglement swapping is within the reach
of current technology and significantly simplify the
implementation. On the one hand, the joint measure-
ment of the entangled beam is an important opera-
tion in quantum information, such as for dense coding,
on the other hand, the local measurement with classi-
cal communication is another important method which
has been used to demonstrate the EPR-type entangle-
ment [11]. It may reduces the loss of the transmission
of quantum state from Alice and Bob to Victor.
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